In this paper we build on an approach proposed by Zou et al. (2014) for nonpara- metric changepoint detection. This approach defines the best segmentation for a data set as the one which minimises a penalised cost function, with the cost function defined in term of minus a non-parametric log-likelihood for data within each segment. Min- imising this cost function is possible using dynamic programming, but their algorithm had a computational cost that is cubic in the length of the data set. To speed up computation, Zou et al. (2014) resorted to a screening procedure which means that the estimated segmentation is no longer guaranteed to be the global minimum of the cost function. We show that the screening procedure adversely affects the accuracy of the changepoint detection method, and show how a faster dynamic programming algorithm, Pruned Exact Linear Time, PELT (Killick et al., 2012), can be used to find the optimal segmentation with a computational cost that can be close to linear in the amount of data. PELT requires a penalty to avoid under/over-fitting the model which can have a detrimental effect on the quality of the detected changepoints. To overcome this issue we use a relatively new method, Changepoints Over a Range of PenaltieS (CROPS) (Haynes et al., 2015), which finds all of the optimal segmentations for multiple penalty values over a continuous range. We apply our method to detect changes in heart rate during physical activity.
展开▼
机译:在本文中,我们以Zou等人提出的方法为基础。 (2014)用于非参数变化点检测。这种方法将数据集的最佳分割定义为最小化惩罚成本函数的分割,其中成本函数的定义是减去每个分段内数据的非参数对数似然。使用动态编程可以最小化此成本函数,但是他们的算法的计算成本在数据集的长度上是三次的。为了加快计算速度,Zou等人。 (2014)诉诸筛选程序,这意味着估计的细分不再被保证为成本函数的全局最小值。我们展示了筛选程序对变更点检测方法的准确性产生了不利影响,并展示了如何使用更快的动态规划算法,即精确精确线性时间,PELT(Killick等,2012)来找到最优分割方法。计算量可能接近数据量的线性。 PELT要求付出一定的代价,以避免模型不足/过度拟合,这可能会对检测到的变更点的质量产生不利影响。为了克服这个问题,我们使用了一种相对较新的方法,即“惩罚范围内的变化点”(CROPS)(Haynes et al。,2015),该方法可以找到连续范围内多个惩罚值的所有最佳分割。我们应用我们的方法来检测体育锻炼期间心率的变化。
展开▼